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The role played by acoustic waves in one-dimensional oscillatory instabilities is investigated at moderate
overdrives. The mechanism responsible for the instability is similar to the quasi-isobaric one at high over-
drives. The overall effect of pressure fluctuations is stabilizing and decreases the oscillatory frequency at the
instability threshold. A nonlinear integral equation for the evolution of the detonation velocity is obtained as an
asymptotic solution of the reactive Euler equations.

PACS number~s!: 47.40.2x, 47.70.Fw, 47.20.2k

I. INTRODUCTION

Due to a large activation energy in the Arrhenius factor of
the exothermal reaction rate, the inner structure of a detona-
tion wave is, according to Zeldovich-Neumann-Do¨ring, con-
stituted by a strong inert shock followed by a subsonic react-
ing flow. Most of the gaseous detonation fronts are cellular,
with a pattern changing continuously with time@1#. Attempts
to unravel the underlying physical mechanisms have met
with a modicum of success. A basic feature is the coupling of
transverse pressure waves, downstream of the leading shock,
to mechanisms responsible for longitudinal oscillations@2#.
One-dimensional oscillatory instabilities, called galloping
detonations, have been observed in experiments@3#, and re-
produced very early by direct numerical simulations of un-
steady detonations in plane geometry@4#. The corresponding
Hopf bifurcation was also studied by numerical analysis of
the linearized equations@5#.

A full understanding of these one-dimensional oscillatory
instabilities is a prerequisite to the analysis of cellular deto-
nation fronts. In previous work@6#, the physical mechanism
triggering the galloping detonations has been identified in the
limiting propagation regime of a large degree of overdrive.
Such a regime of piston-supported detonations~see Fig. 1!
corresponds to a large piston velocity yielding a very large
Mach number of the shock and a very small local Mach
number of the burned gas flow relative to the shock. Conse-
quently a quasi-isobaric approximation is valid downstream
of the shock, throughout the entire reaction zone. Then a
global mass conservation linking the mass flux across the
leading shock to the variation of mass of the gas downstream
the shock, yields strong one-dimensional and nonlinear os-
cillations of the detonation structure@6#. Until now, pressure
waves were commonly considered as essential mechanisms
of the instabilities of detonation fronts. Our recent analysis
@6# shows that this is not the case for the one-dimensional
instability at large overdrives, but the question is left open
for other propagation regimes. In this paper the analysis is
extended to ordinary regimes at moderate overdrives for
which the quasi-isobaric approximation is no longer fully
satisfactory. Due to a local Mach number of the flow which
is not sufficiently small everywhere, pressure waves with
non-negligible amplitudes are associated with any unsteady
behavior. Their role is studied in this paper by using a per-
turbative analysis around the quasi-isobaric approximation.

Physical insights into the problem of galloping detona-
tions may be summarized as follows. Coupling of acoustic
waves to heat release may lead to instabilities of a reacting
flow in a cavity. Owing to gas expansion, local variations of
the heat release rate act as distributed volume sources excit-
ing acoustic waves which, in turn, modify the reaction rate.
When a thermoacoustic instability develops, the fluctuations
of the heat release rate and pressure are positively correlated
~Rayleigh criterion!, yielding an amplification of standing
acoustic waves in the cavity where the combustion proceeds
@7#. The oscillatory instability of detonations is different in
many aspects. It consists of a periodic variation of both the
shock velocity and the distribution of heat release rate@see
Fig. 1~b!# with a period of oscillation which is markedly
larger than the acoustic time. The feedback loop of the local
gas expansion upon the local rate of heat release proceeds
through the shock and involves both the pressure and the
entropy waves. Due to the temperature sensitivity of the in-

FIG. 1. Plane detonation.~a! Piston-supported detonation propa-
gating in a tube.~b! Sketch of the inner structure of the detonation
front. The flow velocities are in the reference frame of the shock.
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duction kinetics, the distance between the shock and the peak
rate of the heat release is governed by the temperature varia-
tions of the shocked gas associated with the velocity fluctua-
tions of the inert shock. The resulting modifications of the
local heat release rate are transported downstream mainly by
the entropy waves, while the perturbations carried by the
acoustic waves propagating downstream have a smaller in-
fluence. However, the pressure waves are responsible for car-
rying the gas expansion effects upstream, back to the leading
shock, for closing the feedback loop. In other words, acous-
tic waves are essential elements but only as a carrier of in-
formation. Furthermore, as shown in this paper, the coupling
of the pressure fluctuations to the heat release rate has an
overall stabilizing effect upon the oscillatory mechanism.
Thus the physical mechanism responsible for the instability
is not related to the Rayleigh criterion of thermoacoustic
instabilities, but is similar to the quasi-isobaric one exhibited
in the limiting case of a large degree of overdrive@6#.

In Sec. II we present the formulation of the problem with
the basic approximations which are used. The different re-
gimes are described in Sec. III. Section IV contains a pertur-
bative analysis of the pressure effects at moderate over-
drives. Finally, the results are discussed in Sec. V.

II. PROBLEM DEFINITION

The objective is to determine the nonlinear evolution of
the shock velocity and the detonation structure.

A. Constitutive equations and boundary conditions

According to Rankine-Hugoniot conditions, temperature
and pressure perturbations of the shocked gas~Neumann
spike!, dTN anddpN , are associated with small variations of
the Mach numberM based on the velocity of the shock,dM ,
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, ~1a!

valid for a polytropic gas whereg is the ratio of specific
heats. The subscriptsN and 0 denote, respectively, the state
at the Neumann spike and the steady state solution. The
strong shock approximation

M0
2@1, ~g21!M0

25O~1!, ~1b!

which is used in~1a!, is valid without restriction in gaseous
detonations. The equations of the entropy waves are
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whereD/Dt denotes the substantive derivative, andQ is the
heat of reaction. In the simplest kinetics model the reaction
rateW(Y,T) depends on the gas temperatureT and on the
progress variableY only ~Y50 at the shock,Y51 in the
burned gases!. This drastic simplification of the combustion
chemistry is used here as an illustrative example; more real-
istic schemes may be introduced in the analysis. By using a
system of reduced coordinates constituded by a mass
weighted distance from the shockj and a reduced time

t5t/t0, the substantive derivative takes a simple form in
which the convection term involves the instantaneous Mach
number of the leading shockM ~t! only,
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where the reference timet0 is the induction time at the Neu-
mann spike of the steady solution,t0'WN0

21 with
WN0[W(Y50,T5TN0). The instantaneous shock position
is denoted byxs(t), andvN0 is the flow velocity relative to
the shock at the Neumann spike of the steady solution,rN0 is
the corresponding gas density. The region downstream of the
shock corresponds toj.0. The characteristic equations de-
scribing the pressure waves are
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where a is the local sound speed,v is the flow velocity
relative to the shock of the steady solution, and
a[(ra/rN0vN0) is the reduced sound speed in coordinates
~3!. The detonation dynamics represented byM ~t! is ob-
tained by solving Eqs.~2! and ~4! with boundary conditions
~1! at the shock~j50!, including Y50 and a Rankine-
Hugoniot condition~5! for v, and an additional boundary
condition ~6! downstreamj→1`. At the same approxima-
tion as~1!, the Rankine-Hugoniot condition forv yields

j50:
dvN
vN0

'2
1

~g21!

dTN
TN0

. ~5!

When the size of the burned gas region between the end of
the reaction and the piston is much larger than the detonation
thickness, a radiation condition is valid for acoustic pertur-
bations transmitted downstream:

j→1`: dp2rb0ab0dv50, ~6!

wheredp anddv are perturbations from the steady state of
the burned gas denoted by subscriptb0. Condition ~6! is
valid whenever the nonlinear effects of the perturbations in
the burned gases are negligible.

B. Basic approximations

When the difference of heat capacities is small,~g21!!1,
and when the temperature sensitivity of the induction kinet-
ics is large enough,bN@1, the distribution of the heat release
rate is modified mainly by the thermal energy transported
from the shock by the entropy waves. In the framework of
the simple kinetics model~2!, one has, by definition,

dWN
21/WN

21[bNdTN /TN where WN[~Y50,T5TN!.
~7!

The main effects are picked up in the limit

~g21!→0 and bN→1` with bN~g21!5O~1!
~8a!

and when the attention is limited to weak perturbations of the
strong leading shock,
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dM ~t!/M05O~bN
21! with ~g21!M0

25O~1!. ~8b!

In such conditions, the pressure term is negligible in~2!:
heating by reversible adiabatic compressions is much smaller
than by the exothermal reaction. Then system~2! forms a
closed set of nonlinear equations for the species concentra-
tion and temperature which are no longer coupled to the gas
dynamics excepted through the boundary condition at the
shock. According to~8b!, a further simplification occurs
when thebN

21 terms are neglected so that the substantive
derivative, expressed in coordinates~3!, reduces toD/Dt
']/]t1]/]j. Within these approximations, the instantaneous
distribution of the rate of heat release is obtained in terms of
TN~t! by solving

1

TN0
S ]

]t
1

]

]j DT5
Q

CpTN0
W~Y,T!,

S ]

]t
1

]

]j DY5W~Y,T!, ~9a!

valid whenbN
21 terms are neglected. For real mixtures the

result may easily be obtained numerically as the solution of a
system generalizing~9a!. In the framework of simplified
model~9a!, T5TN(t2j)1YQ/Cp . The distributions of the
reduced reaction rate and temperature,W/WN05w~j,t! and
T/TN05u~j,t!, are obtained at any instant of time, as a non-
linear function ofdTN~t! only, but at early times involving
delays which increase with the distance from the shock. The
model used in@6# yields the following analytical expression:

w~j,t!5eQN~t2j!w0~jeQN~t2j!!,

u~j,t!5u0~jeQN~t2j!!, ~9b!

with

du0~j!

dj
5

Q

CpTN0
w0~j! and E

0

`

w0~j!dj51, ~9c!

whereQN(t)[bNdTN(t)/TN0 is the reduced fluctuation of
the temperature of the shocked gas, and wherew0~j! and
u0~j! are the reduced distributions of the steady solution.
According to~1! and~8!, QN~t! is a quantity of order unity.
For an ordinary Arrhenius law W(Y,T)5(1
2Y)B exp~2EN/RT!, the brute forced limitbN→1` of the
solutions of~2! yields ~9b! and ~9c!, but with a nonsingular
steady distributionw0~j! only in the limit of a weak heat
releaseQ/CpTN05O(1/bN), while with Q/CpTN05O(1)
one gets a singular distributionw0~j!5d~j21! corresponding
to the so-called square-wave model in which the heat release
rate is concentrated in an infinitely thin sheet located atj51.
The square-wave model is not suitable for studying the deto-
nation dynamics, because it leads to spurious singularities in
the high frequency range. As explained in@6#, a nonzero
thickness of the heat release region is necessary for correctly
describing the high frequency behavior. For simplicity, we
will use here, as in our previous work@6#, a chemical kinetic
model defined by~9b! with a smooth distributionw0~j!,
without restriction on the heat release parameterQ/CpTN0.
The distribution of reduced rate of heat releasew0~j! in the
steady state is considered independent from the temperature

sensitivity of the induction kinetics at the Neumann spike,
bN , and fromQ/CpTN0. A comparison with numerical solu-
tions of system generalizing~2! for a complex kinetics
scheme shows that the thus obtained nonlinear laws~9b! are
satisfactory for real mixtures such as hydrogen and oxygen
@6#. Note that the quantity exp@2QN~t2j!# in ~9b! corre-
sponds to the induction time scale of the gases propagating
from the shock with the entropy waves.

C. Method

Once the instantaneous distribution of the heat release rate
is known in terms of the history of the shocked gas tempera-
tureTN~t!, as given by~9b! and~9c!, the detonation dynam-
ics is obtained as follows. The unknown function is the re-
duced temperature fluctuationQN~t! which, according to~1!,
represents the motion of the shock,M ~t!. The acoustic
modes are fed by the heat release variations~9b! appearing
as a source term in equations~4!. The upstream propagating
wave ~2! is responsible for a feedback upon the leading
shock, while the downstream one~1! determines the result-
ing amplitude of the acoustic fluctuations transmitted to the
burned gases. In principle, an integral equation for the evo-
lution of QN~t! is obtained by a space integration of~4!
along the wave~2! propagating upstream from the burned
gas atj51` where condition~6! holds, toward the shock at
j50 where~1a! and ~5! are satisfied. The variations of the
sound speed prevents us from analytically carrying out such
an integration in the general case. Particular regimes are
worth considering.

III. DIFFERENT REGIMES

The problem may be formulated in another equivalent
form, convenient to identify further approximations. Equa-
tions ~4! result from mass and momentum equations which
may be written in terms of reduced variables~3! and reduced
functionsr[rN0/r, u[v/vN0, andp[p/pN0 as

2
D

Dt
r1

]

]j
u50, «2

D

Dt
u1

]

]j S u

r D50, ~10a!

where the equation of ideal gas,p[u/r , has been used, and
where, by definition,

«2[gMN0
2 . ~10b!

The local Mach number of the flow at the Neumann spike of
the unperturbed solution,MN0[vN0/aN0, is given by the
Rankine-Hugoniot conditions written in a strong shock ap-
proximation~1b! as

«25gMN0
2 .

21~g21!M0
2

2M0
2 . ~11a!

According to~8a! and~8b!, «2 is a small number of the same
order of magnitude as 1/bN ,

«25OS 1

bN
D . ~11b!
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Onceu~t,j!, as given by~9b!, is introduced into~10a!, this
system forms a closed set of equations forr and u. The
unknown functionQN~t! is obtained when the boundary con-
ditions at the shock and at the piston are applied to the so-
lution of ~10a!. At the leading order of asymptotic expansion
~8!, boundary conditions~1! and ~5! at the shock take the
following form:

r ~j50,t!51, u~j50,t!512QN~t!/bN~g21!, ~12a!

while the boundary condition at the piston yields

u~j51`,t!5ub0[vb0 /vN0 , ~12b!

where vb0 is the prescribed piston velocity supporting the
detonation in the burned gases atj51`. Unfortunately the
analytical solution of~10a! for a given functionu~t,j! is not
an easy task in general.

The presence of the small«2 term suggests a perturbative
approach. However, this term does not always yield a small
contribution. This«2 term cannot generally be neglected at
the leading order of asymptotic expansion~8!, because
Du/Dt may take values as large as 1/«2. The condition«2!1
means that the flow just downstream of the shock is very
subsonic. However, the local Mach number of the flow in-
creases with the distance from the shock under the effect of
the heat release, and the«2 term is negligible in~10a! only in
a limiting cases when a quasiisobaric approximation is valid
everywhere downstream of the shock.

A. Steady solutions

The steady solutions of~10a!,

u0~j!5r 0~j!5
1

2«2
@~11«2!2A~11«2!224«2u0~j!#,

~13a!

are useful to classify the different regimes of propagation.
The temperature increases monotonously with the distance
from the shock,u0~j!P@1,ub0#, as well as the local Mach
number, an increasing function of the temperature. Within
the framework of approximations~8a! and ~9c!, the leading
order of the burned gas temperature atj51` is given by

ub0[11q with q[Q/CpTN0 . ~13b!

According to~13a!, the reduced heat release is bounded from
above byqCJ, q<qCJ, with, by definition,

ubCJ511qCJ[~11«2!2/4«2'1/4«2. ~14a!

The caseq5qCJ corresponds to the marginal Chapman-
Jouguet~CJ! regime with, according to~13a!,

ub05ubCJ[~11«2!/2«2'1/2«2, ~14b!

yielding a sonic condition at the end of the reaction
vb05ab0, with ab0/aN05u b0

1/2. In practical situations, the
detonation regimeM0 is prescribed by the piston velocity
vb0 for any given initial thermodynamic state (pu ,Tu) of the
fresh mixture. The CJ wave corresponds to the minima of
vb0 andM0, vb0>vbCJ, andM0>MCJ. There is no steady
solution forvb0<vbCJ, and the Mach number of the detona-

tion M0 increases withvb0. The CJ minima may be com-
puted in terms of (pu ,Tu) from ~14! and the Rankine-
Hugoniot conditions to give, at the leading order of~8a!,
M CJ

2 54Q/CpTu .

B. Independent parameters

The overdrive factor, defined asf[~M0/MCJ!
2>1, is ex-

tensively used in the specialized literature to classify the dif-
ferent regimes of steady propagation. Neither the initial ther-
modynamic parameters (pu ,Tu) nor the overdrive factorf
appear explicitly in our formulations~10! and ~12!. Two in-
dependent parameters~«2,q!, defined by~11a! and ~13b!,
characterize both the reactive mixture and the steady propa-
gation regimes. Theq parameter appears throughub0 in
~12b!, which is, according to~13a!, a function ofq and«2.
The correspondence between parameters~«2,q! and~f ,M CJ

2 !,
is given by the Rankine-Hugoniot conditions

f5S g11

2 D 1

4q«2
, MCJ

2 5
1

S «22
g21

2 D f , ~15!

showing, as in~11a!, that strong shock assumption~1b! leads
to small«2, «25O~g21!, but with «2.~g21!/2.

Two additional parameters@w0~j!, bN~g21!# characteriz-
ing the chemical kinetics, appear in the analysis. The reduced
distributionw0~j! of the heat release rate governs the steady
temperature profileu0~j! in ~10a!, while the temperature sen-
sitivity of the induction kinetics,bN~g21!, appears in~12a!.
These kinetics parameters govern the dynamical properties
of detonations for any regime of steady propagation charac-
terized by parameters~«2,q!.

C. Different regimes of propagation

The different regimes of steady propagation are classified
by the relative ordering betweenq and«2 or, by using~11b!
in the limit ~8a!, betweenq andbN . Two extreme regimes
are worth considering first: near CJ regimes~low overdrive!

q5O~bN!, ~16a!

and regimes at high overdrive,

q5O~1!. ~16b!

As for the CJ regime~14a! and ~14b!, the near-CJ regimes
defined by~16a! are characterized byq5O(1/«2), yielding,
according to~15!, f5O(1). According to ~13a! and ~13b!,
one hasub05O(1/«2) and the variations ofu, r , and u
across the detonation structure are large, of the same order of
magnitude as 1/«2, while p varies of order unity. The local
Mach number of the flow reaches values close to unity. The
«2 term cannot be neglected in~10a!, «2Du/Dt5O(1). The
opposite regimes defined by~16b! correspond to a large
overdrive factorf5O(1/«2). Here the variations ofu, r , and
u across the detonation structure are, according to~13a!, of
order unity, while the variations ofp are small of the same
order of magnitude as«2 @see~10a!#. Thus, at the leading
order of limit ~8a!, the «2 term is fully negligible in~10a!,
and a quasi-isobaric approximation is valid throughout the
detonation structure.
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D. Detonation dynamics at high overdrives

A nonlocal equation forQN~t! describing the galloping
detonations in these regimes has recently been obtained@6#.
The main steps are recalled here. Generally speaking, the
mass flux across the shock must be balanced by the integral
of the instantaneous rate of density change. A space integra-
tion of the equation for the mass conservation, first equation
~10a!, with boundary conditions~12a! and ~12b!, yields

~vb02vN0!
vN0

1
QN~t!

~g21!bN
5E

0

` D

Dt
r dj. ~17a!

Finally the quasi-isobaric approximationr'u, and ~9a! and
~9c!, Dr /Dt'Du/Dt'qw, leads to the following nonlinear
integral equation:

11bQN~t!5E
0

`

eQN~t2j!w0~jeQN~t2j!!dj,

with ~17b!

b[1/qbN~g21!5O~1!,

valid at the leading order of an asymptotic expansion~8a!
and ~8b! for the dynamics of detonation in the regime de-
fined by~16b! and whereqbN~g21! is a parameter of order
unity. Oscillatory instabilities with a negligible amplitude of
pressure waves are described by~17b! with a period of os-
cillation related to the transit time of fluid particles from the
shock to the end of the reaction and, thus, according to~11a!
and ~11b!, much longer than the acoustic time. This shows
that galloping detonations are not related to ordinary ther-
moacoustic instabilities, at least in limiting case~16b! @6#.

The rest of this paper is devoted to studying more realistic
regimes at moderate overdrive, in between~15a! and ~15b!,
in which the effect of pressure waves is no longer fully neg-
ligible but small enough to be investigated by a perturbation
analysis.

IV. ANALYSIS AT MODERATE OVERDRIVES

When approaching the marginal CJ regime from the large
overdrive ones by increasingq from order unity to large
values@see~16a! and~16b!#, the Mach number of the burned
gases increases. However, according to~11a! and ~11b!, the
local Mach number of the shocked gases is kept small in the
limits ~8a! and~8b!. If the local Mach number remains small
on a sufficiently long distance from the leading shock, the
transit time of entropy waves is still longer than the one of
the acoustic mode propagating downstream. Then the posi-
tion of the peak reaction rate fluctuates with a much smaller
velocity than the sound speed propagating downstream;
strong thermoacoustic instabilities are ruled out. The insta-
bility mechanism is expected to be similar to the quasi-
isobaric one but with quantitative changes. In particular, the
upstream propagation of pressure signals must introduce an
additional time delay, further increasing the period of oscil-
lation.

A. Order of magnitude estimates

Orders of magnitude are obtained from the acoustic mode
propagating upstream given by~4!

F ~a2m!
]

]j
2

]

]t G S u2
u1/2

gMN0
lnp D5aH, ~18a!

with

H~j,t![
q

p
w~j,t!2

lnp

gMN0
S ]

]j
2
1

a

D

Dt D u1/2, ~18b!

wherew~j,t! is given by ~9b!, m[M (t)/M0 is the same
factor as in~3!, anda5~MN0u

1/2!21p, introduced in~4!, is
expressed here for an ideal gas. An integration along the
characteristic curve,j5x~t! with dx/dt52(a2m), yields

Fu2
u1/2

gMN0
lnp G

j50

j

5E
0

j

H~x8,t2Dt!a
dx8

~a2m!
,

~19a!

whereDt is the time delay on this characteristic curve,

Dt[E
0

x8 dx9

~a2m!
. ~19b!

At the marginal CJ case the denominator in~19b! vanishes at
the end of the reaction but without divergence of the integral.
Thus the order of magnitude of the additional time delay
across the detonation thickness is easily obtained from~19b!,
Dt5O(MN0u b0

1/2). At high overdrives~16b! this time delay
is, according to~8b! and ~13b!, ub05O(1), of thesame or-
der of magnitude asMN05O~12g!1/2, andDt5O@~12g!1/2#,
yielding, in the framework of~8a!, ~11a! and~11b!, a correc-
tion to ~17b! of orderbN

21/2. However, in the opposite case,
for near CJ regimes~16a!, Dt is, according to~11a!, ~11b!,
and ~14a!, ubCJ'1/4MN0

2 , of order unity MN0ubCJ
1/2'1/2,

yielding a correction to~17b! of order unity.

B. Analysis

Here we study the intermediate regime at moderate over-
drive, in between~16a! and ~16b!, and defined by

1<q,bN , ~20a!

which, according to~11a!, ~11b!, and~13b!, also corresponds
to

bN
21/2<MN0ub0

1/2,1, ~20b!

where these inequalities have to be understood as concerning
the orders of magnitude. According to~13a!, the variations
of u0 andu0 across the detonation structure are of the same
order asq, while, as shown below, the variation ofp is still
small, of orderM N0

2 ub0. The acoustic effects are described
by working at the first order of an expansion in powers of the
small parameterMN0u b0

1/2 in the limits ~8a! and ~8b! by ne-
glecting term of orderbN

21 and still using~9a!–~9c!. Regime
~20a! ranges from high overdrives~16b! to moderate over-
drives. Every propagation regime characterized by an over-
drive factor f of the same order of magnitude asbN

1/n,
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f50(b N
1/n), with a positive integern>1, may be described

by this perturbative analysis, up to the first order,
MN0u b0

1/25O(b N
21/2n), neglecting terms of second order,

M N0
2 ub05O(b N

21/n). This shows that terms of orderbN
21

may be consistently neglected, and approximations~9a! and
~9c! may still be used. Such an analysis provides a satisfac-
tory description of regimes not too far from the marginal CJ
condition, which is approached for largen, n@1.

The local Mach number increases with the distance from
the shock but, in propagation regime~20a!, it keeps a value
sufficiently smaller than unity to work in perturbation around
the quasi-isobaric approximation of the detonation structure,
Mb05MN0u b0

1/2 anda215O(MN0u
1/2). The order of magni-

tude of pressure variation is evaluated from the second equa-
tion of ~10a! by anticipating that the period of oscillation
keeps the same order as at high overdrives, yielding
dp5O(M N0

2 ub0). The second term on the right-hand side of
~18b! describes gradient effects of the nonhomogeneous me-
dium across which the sound propagates, yielding a relative
correction to the first termqw of orderMN0q/u b0

1/2 which is
of the same order of magnitude as the first relative correction
to the delay,MN0u b0

1/2. The leading order of the pressure
variation across the detonation is obtained by introducing the
quasi-isobaric approximation ofu in the equation for mo-
mentum conservation@the second equation of~10a!#

@p~j,t!2p~j50,t!#

gMN0
2 52qE

0

j

w~j8,t!dj8

1qE
0

j

dj8E
j8

` ]w~j9,t!

]t
dj9,

~21!

wheredp~j50,t! is given by~1a!.
According to ~4! with a21'~MN0u

1/2!, the ratio of the
detonation thickness to the acoustic wavelength in the
burned gases is small, of orderMN0u b0

1/2. Pressure field~21!
is valid across the detonation structure, a thin layer compared
to the acoustic wavelength. In the framework of a multiple
scale approximation associated with~20b!, the limit j→1`
of ~21! yields the value of the acoustic field at the entrance of
the burned gas region where a radiation condition~6! holds.
As H vanishes outside the detonation thickness, a linear ex-
pansion inDt may be introduced into~19a! with, according
to ~19b!, is

Dt'MN0E
0

x8
u~x9,t!1/2dx9. ~22!

Then the same quasi-isobaric mass conservation as at high
overdrives is obtained by introducing the limitj→1` of
~21! into ~19a!,

u~j51`,t!2u~j50,t!

q
5E

0

`

w~j8,t!dj8, ~23!

but valid here up to the first order,MN0u b0
1/2, and limited to

the detonation structure. This is easily understood by noting
that the pressure term in the mass conservation@first equation
of ~10a!# yields a correction tou/q of the following order,
M N0

2 ub0, so that2]u/]j5Dr /Dt'Du/Dt'qw is valid

inside the detonation thickness up to the first order. How-
ever, the velocity fluctuations at the exit of the detonation
structure,du~j51`, t!, feed acoustic waves in the down-
stream region of burned gases with a velocity amplitude
dub/ub0 of orderMN0u b0

1/2 and a pressure amplitudedp of
orderM N0

2 ub0. Then the first pressure correction to the deto-
nation dynamics is obtained from~23! by using as boundary
conditionu~j51`, t!, the acoustic radiation condition~6!,
written as

u~j51`,t!2ub05ub0
1/2@p~j51`,t!2pb0#/gMN0 ,

~24!

wheredp~j51`, t!/gMN0 is given by the limitj→1` of
~21! in which dp~j50, t! is obtained from Rankine-
Hugoniot condition~1a!. Another Rankine-Hugoniot condi-
tion ~5! providesu~j50, t! in ~23!. The final result for the
detonation dynamics at intermediate regimes~20a! and~20b!
may be written in the form of a nonlinear integral equation,
similar to ~17b!,

11b8QN~t!5E
0

`

eQN~t2k8j!w0„je
QN~t2k8j!

…dj, ~25a!

valid up to the first order,MN0u b0
1/2, but with both a modified

bifurcation parameterb8 and a modified delayk8j resulting
from pressure effects,

b8[b~11MN0ub0
1/2!, k8[~11MN0ub0

1/2!, ~25b!

where parameterb is the same as in~17b!.

V. DISCUSSION AND CONCLUSION

As shown in@6#, Eq.~17b! presents a Hopf bifurcation for
a sufficiently strong temperature sensitivity~largebN , small

FIG. 2. Dimensionless growth rate vs dimensionless frequency
of the eigenvalues of a typical unstable spectrum obtained from
Eqs. ~25a! and ~25b! in comparison with both the exact numerical
solutions of the linearized version of Eqs.~2!–~4! with boundary
conditions~1a!, ~5!, and~6! and the approximate solution obtained
from the quasi-isobaric model~17b!. The considered parameters are
g51.2, f51.6, andMCJ56.22~«50.311 andq51.17!. The reaction
model is an Arrhenius law withbN58.44. The time scale used to
reduce the variables is the half-reaction time.
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b! representing the galloping detonations of strongly over-
driven detonations~16b!. The reduced distributionw0~j! is
stiffer, the critical value ofbN is smaller, and the detonation
is more unstable. The origin of the oscillations lies on the
delay introduced by the entropy waves in a quasi-isobaric
mass conservation. The nonlinear behavior is governed by
the temperature sensitivity of the induction kinetics. Com-
parisons with numerical simulations show right orders of
magnitude for both frequencies and critical values of param-
eterb obtained from~17b!, but with quantitative discrepan-
cies at moderate overdrives@6#; see Fig. 2.

According to~25a! and~25b!, describing the dynamics of
detonations at moderate overdrives defined by~20a! and
~20b!, the pressure fluctuations introduce two quantitative
modifications from the results at high overdrives but no
qualitative change:~i! The period of the oscillation is in-
creased, and~ii ! the critical value of the bifurcation param-
eter b is decreased. By increasing the critical value of the
temperature sensitivitybN at the instability threshold@the
critical value of 1/qbN~g21! is decreased#, the pressure ef-
fects appear to be stabilizing. The main reason is that the
energy rate involved by the pressure fluctuations at the shock
is, according to~1a! and ~5!, negative,dpNdvN,0, exhibit-
ing a damping mechanism which is added to the one associ-
ated with the radiation condition at the end of reaction~6!.
These two damping mechanisms overcome the other pres-
sure effects, so that the net effect of the pressure is stabiliz-
ing. The destabilizing mechanism at moderate overdrives is

still the quasi-isobaric mass conservation exhibited at high
overdrives. This result definitely clarifies the nature of gal-
loping detonations at ordinary conditions.

The oscillatory instability of detonations very close to the
CJ regimes represented by~16a! cannot, from a mathemati-
cal point of view, be described by the perturbative analysis
used for regimes represented by~20a!. The reason is that the
perturbation parameterMN0u b0

1/2 has an order of magnitude
which is no longer smaller than unity,MNCJubCJ

1/2 5 1
2. How-

ever, as no new phenomenon is involved, only quantitative
modifications are expected. Moreover, the neglected terms
being typicallyMNCJ

2 ubCJ5
1
4, the quantitative differences are

not so large. Comparisons with numerical results show a
relatively good quantitative agreement for both the period of
oscillations and the stability limits predicted by~25! at mod-
erate overdrives. The results are still satisfactory for over-
drive factors which are not very far from unity. As an ex-
ample, a typical unstable spectrum given by~25! is plotted in
Fig. 2, in comparison with both the exact numerical solutions
and the approximation solutions obtained from the quasi-
isobaric model.

Owing to the effects of inhomogeneities, the additional
delay ~25b!, MN0u b0

1/2, is quantitatively different from~19b!
but has the same order of magnitude. The same equation as
~25a! involving the same delay as~19b! is obtained when the
gradient effects are negligible, as in the limiting case of a
small heat release,q,1, corresponding to very strongly
overdriven detonations@8#.
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