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Acoustic effects in the nonlinear oscillations of planar detonations
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The role played by acoustic waves in one-dimensional oscillatory instabilities is investigated at moderate
overdrives. The mechanism responsible for the instability is similar to the quasi-isobaric one at high over-
drives. The overall effect of pressure fluctuations is stabilizing and decreases the oscillatory frequency at the
instability threshold. A nonlinear integral equation for the evolution of the detonation velocity is obtained as an
asymptotic solution of the reactive Euler equations.

PACS numbds): 47.40—x, 47.70.Fw, 47.20-k

[. INTRODUCTION Physical insights into the problem of galloping detona-
tions may be summarized as follows. Coupling of acoustic
Due to a large activation energy in the Arrhenius factor ofwaves to heat release may lead to instabilities of a reacting
the exothermal reaction rate, the inner structure of a detondlow in a cavity. Owing to gas expansion, local variations of
tion wave is, according to Zeldovich-Neumannisibg, con-  the heat release rate act as distributed volume sources excit-
stituted by a strong inert shock followed by a subsonic reacting acoustic waves which, in turn, modify the reaction rate.
ing flow. Most of the gaseous detonation fronts are cellular¥Vhen a thermoacoustic instability develops, the fluctuations
with a pattern changing continuously with tirfi]. Attempts ~ Of the heat release rate and pressure are positively correlated
to unravel the underlying physical mechanisms have metRayleigh criterion, yielding an amplification of standing
with a modicum of success. A basic feature is the coupling oficoustic waves in the cavity where the combustion proceeds
transverse pressure waves, downstream of the leading shodi]- The oscillatory instability of detonations is different in
to mechanisms responsible for longitudinal oscillatipgs ~ Many aspects. It consists of a periodic variation of both the
One-dimensional oscillatory instabilities, called gallopingsShock velocity and the distribution of heat release fate
detonations, have been observed in experimg8itsand re-  Fig. 1(b)] with a period of oscillation which is markedly
produced Very early by direct numerical Simulations of un_larger than the aCOUStiC t|me The feedbaCk |00p Of the |Oca|
steady detonations in plane geomd#y. The corresponding 9as expansion upon the local rate of heat release proceeds
Hopf bifurcation was also studied by numerical analysis ofthrough the shock and involves both the pressure and the
the linearized equatior$]. entropy waves. Due to the temperature sensitivity of the in-
A full understanding of these one-dimensional oscillatory
instabilities is a prerequisite to the analysis of cellular deto-
nation fronts. In previous work6], the physical mechanism
triggering the galloping detonations has been identified in the ~ @ [ T
limiting propagation regime of a large degree of overdrive. |
Such a regime of piston-supported detonatiee Fig. 1
corresponds to a large piston velocity yielding a very large
Mach number of the shock and a very small local Mach
number of the burned gas flow relative to the shock. Conse- N
quently a quasi-isobaric approximation is valid downstream s OO
of the shock, throughout the entire reaction zone. Then a ' N\
global mass conservation linking the mass flux across the
leading shock to the variation of mass of the gas downstream :
the shock, yields strong one-dimensional and nonlinear os- D Py Y
cillations of the detonation structufé]. Until now, pressure ,
waves were commonly considered as essential mechanisms o, Neumann state |
of the instabilities of detonation fronts. Our recent analysis T
[6] shows that this is not the case for the one-dimensional
instability at large overdrives, but the question is left open shock
for other propagation regimes. In this paper the analysis is
extended to ordinary regimes at moderate overdrives for |
which the quasi-isobaric approximation is no longer fully Xs o X
satisfactory. Due to a local Mach number of the flow which detonation thickness
is not sufficiently small everywhere, pressure waves with
non-negligible amplitudes are associated with any unsteady FIG. 1. Plane detonatiofia) Piston-supported detonation propa-
behavior. Their role is studied in this paper by using a pergating in a tube(b) Sketch of the inner structure of the detonation
turbative analysis around the quasi-isobaric approximation.front. The flow velocities are in the reference frame of the shock.

detonation front piston
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duction kinetics, the distance between the shock and the peak=t/t,, the substantive derivative takes a simple form in
rate of the heat release is governed by the temperature varighich the convection term involves the instantaneous Mach

tions of the shocked gas associated with the velocity fluctuanumber of the leading shodW (7) only,
tions of the inert shock. The resulting modifications of the

local heat release rate are transported downstream mainly by, 1 fx (" ,t)dx’ D_9d MDD
the entropy waves, while the perturbations carried by the toVNoPNo xs(t)p ' " D7 dr Mgy 9¢’
acoustic waves propagating downstream have a smaller in- 3

fluence. However, the pressure waves are responsible for car-
rying the gas expansion effects upstream, back to the |eadiﬁghere the reference tlm@ is the induction time at the Neu-
shock, for closing the feedback loop. In other words, acousann spike of the steady solutionto~Wpyg with
tic waves are essential elements but only as a carrier of inVno=W(Y=0,T=Tyo). The instantaneous shock position
formation. Furthermore, as shown in this paper, the couplindgS denoted by(t), anduvy, is the flow velocity relative to
of the pressure fluctuations to the heat release rate has #t€ shock at the Neumann spike of the steady solufighis
overall stabilizing effect upon the oscillatory mechanism.the corresponding gas density. The region downstream of the
Thus the physical mechanism responsible for the instabilityghock corresponds t§>0. The characteristic equations de-
is not related to the Rayleigh criterion of thermoacousticScribing the pressure waves are
instabilities, but is similar to the quasi-isobaric one exhibited . - +
in the limiting case of a large degree of overdr[\&. i D_ pii D_ v= i ﬂ D_ 3
In Sec. Il we present the formulation of the problem with YP D7~ a D7~ C,T Wy," D7 Dr
the basic approximations which are used. The different re- . . .
gimes are described in Sec. lll. Section IV contains a pertur\—"’here a is the local sound speed, is the flow velocity

bative analysis of the pressure effects at moderate oveF-eE"t'Ve to the_ shock of the steady s_olu'uon,_ and
drives. Finally, the results are discussed in Sec. V. a=(pa/pnovno) IS the reduced sound speed in coordinates
' (3). The detonation dynamics represented My7) is ob-

tained by solving Eqs(2) and(4) with boundary conditions

Jd
aa—g,

I+

4

Il. PROBLEM DEFINITION (1) at the shock(¢é=0), including Y=0 and a Rankine-
The objective is to determine the nonlinear evolution ofHugoniot condition(5) for v, and an additional boundary
the shock velocity and the detonation structure. condition (6) downstream¢— +. At the same approxima-
tion as(1), the Rankine-Hugoniot condition far yields
A. Constitutive equations and boundary conditions . Sun 1 STy
According to Rankine-Hugoniot conditions, temperature §=0: Uno =T (v=1) Tno ®)

and pressure perturbations of the shocked @éesumann
spike, 6Ty anddpy , are associated with small variations of When the size of the burned gas region between the end of
the Mach numbeM based on the velocity of the shociM, the reaction and the piston is much larger than the detonation
thickness, a radiation condition is valid for acoustic pertur-
oy 2(y— MG oM dpy oM bations transmitted downstream:

T A \na2 ., A~ na -~ FVEE (1a)
Tno  (y=DMG+2 Mo’ pno ~ Mg b0l Sp—poodugSo=0 ©

valid for a polytropic gas where is the ratiq of Specific  \here op and év are perturbations from the steady state of
heats. The subscriptd and O denote, respectively, the state (ha purned gas denoted by subsciijit. Condition (6) is
at the l\:]eurl?ann spike and the steady state solution. Thg,jiq ywhenever the nonlinear effects of the perturbations in
strong shock approximation the burned gases are negligible.

MZ>1, (y—1)M3=0(1), 1b

0 (y=1Mp=0(1) (1b) B. Basic approximations

which is used in(1a), is valid without restriction in gaseous When the difference of heat capacities is smal; 1)<1,
detonations. The equations of the entropy waves are and when the temperature sensitivity of the induction kinet-
ics is large enoughBy>1, the distribution of the heat release
rate is modified mainly by the thermal energy transported
from the shock by the entropy waves. In the framework of
2 the simple kinetics moddR), one has, by definition,

1DT (y-1)1Dp Q DY
TE_TEE_C_F)TW(Y’T)’ Dr - WY, T,

whereD/Dt denotes the substantive derivative, &pds the SWR W= By STy /Ty where Wy=(Y=0T=Ty).
heat of reaction. In the simplest kinetics model the reaction (7)
rate W(Y,T) depends on the gas temperatlreand on the
progress variabley only (Y=0 at the shockY=1 in the
burne.d ga;e)sThis drastic sim_plificatipn of the combustion (y—1)—0 and By—+% with By(y—1)=0(1)
chemistry is used here as an illustrative example; more real- 8

istic schemes may be introduced in the analysis. By using a

system of reduced coordinates constituded by a masand when the attention is limited to weak perturbations of the
weighted distance from the shocgk and a reduced time strong leading shock,

The main effects are picked up in the limit
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5M(T)/M0=O(ﬂ,gl) with (y— 1)M3=O(1). (8b) sensitivity of the induction kinetics at the Neumann spike,

B, and fromQ/C Ty,. A comparison with numerical solu-

In such conditions, the pressure term is negligible(2i tions of system generalizing2) for a complex kinetics

heating by reversible adiabatic compressions is much smallescheme shows that the thus obtained nonlinear [@lysare

than by the exothermal reaction. Then syst@nforms a  satisfactory for real mixtures such as hydrogen and oxygen

closed set of nonlinear equations for the species concentr@6]. Note that the quantity exp On(7—§&)] in (9b) corre-

tion and temperature which are no longer coupled to the gasponds to the induction time scale of the gases propagating

dynamics excepted through the boundary condition at thérom the shock with the entropy waves.

shock. According to(8b), a further simplification occurs

Whgn t_he,B,g ! terms are neglepted so that the substantive C. Method

derivative, expressed in coordinatéd), reduces toD/Dt ) o

~dlgr+dlo¢. Within these approximations, the instantaneous ©Once the instantaneous distribution of the heat release rate

distribution of the rate of heat release is obtained in terms ofs known in terms of the history of the shocked gas tempera-

Tn(7 by solving f[ure_TN(T), as given by(9b) and(9c), the detonati_on c_iynam—
ics is obtained as follows. The unknown function is the re-
1 /90 9 Q duced temperature fluctuati@y(7) which, according td1),
-|-_N0 E.‘Lﬁ_g T= CoTro W(Y,T), represents the motion of the shockl (7). The acoustic

modes are fed by the heat release variati@®@m® appearing

as a source term in equatio®. The upstream propagating
Y=W(Y,T), (9a)  wave (—) is responsible for a feedback upon the leading

shock, while the downstream olt¢) determines the result-
valid when 85! terms are neglected. For real mixtures theind amplitude of the acoustic fluctuations transmitted to the
result may easily be obtained numerically as the solution of #Urned gases. In principle, an integral equation for the evo-
system generalizing9a). In the framework of simplified Iution of ©\(7) is obtained by a space integration 6f)
model(9a), T=Ty(7—£)+YQ/C,. The distributions of the ~along the wave(—) propagating upstream from the burned
reduced reaction rate and temperaté\Wy,=w(&7) and  9as até=-+o where conditior(6) holds, toward the shock at
T/Tno= 87, are obtained at any instant of time, as a non-6=0 Where(1a) and (5) are satisfied. The variations of the
linear function of STy (7) only, but at early times involving Sound speed prevents us from analytically carrying out such
delays which increase with the distance from the shock. Th@n integration in the general case. Particular regimes are
model used irf6] yields the following analytical expression: Worth considering.

é’+(9
ar o0

W(&,7)=eN"" Dwy(£eONT9), lll. DIFFERENT REGIMES
O(£,7)=0o(£€ONTE)) (9b) The problem may be formulated in another equivalent
form, convenient to identify further approximations. Equa-
with tions (4) result from mass and momentum equations which

may be written in terms of reduced variabl8% and reduced
dng_é‘f): % wo(é) and fxwo(g)d§= 1, (99 functionsr=pyo/p, U=v/v g, andT=p/py, as
p ' NO 0
_ _ D ] , D

where ® \(7)=BnSTn(7)/Tyo is the reduced fluctuation of "D~ r+ 7E u=0, ¢ D- u+ 9E
the temperature of the shocked gas, and whegg) and
6,(é€) are the reduced distributions of the steady solution, . . _
According to(1) and(8), ®y(7) is a quantity of order unity. xﬂgg tE§ gg#r?ittlig?] of ideal gas=¢/r, has been used, and
For an ordinary Arrhenius law W(Y,T)=(1 ’ '
—Y)B exp(—E\/RT), the brute forced limijBy— +« of the
solutions of(2) yields (9b) and (9¢), but with a nonsingular
steady distributionwy(¢) only in the limit of a weak heat ]
releaseQ/C,Tyo=0(1/8y), while with Q/C,Tyo=0(1) The local Mach numbgr of the flow at the_ Nel_Jmann spike of
one gets a singular distributiony(é)=&¢—1) corresponding  the unperturbed solutionM yo=vo/ano, is given by the
to the so-called square-wave model in which the heat relead@ankine-Hugoniot conditions written in a strong shock ap-
rate is concentrated in an infinitely thin sheet locateg=at. ~ Proximation(1b) as
The square-wave model is not suitable for studying the deto-
nation dynamics, because it leads to spurious singularities in ) , 2+ (y— 1)M3
the high frequency range. As explained [iB], a nonzero &=y NO:Z—MS' (113
thickness of the heat release region is necessary for correctly
describing the high frequency behavior. For simplicity, we
will use here, as in our previous wofg], a chemical kinetic
model defined by(9b) with a smooth distributionwg(£),
without restriction on the heat release param@eC T . 1
The distribution of reduced rate of heat releagg¢) in the 82_0(_>_ (11b
steady state is considered independent from the temperature

)
~|=0, (108

e?=yMZ,. (10b)

According to(8a) and(8b), £? is a small number of the same
order of magnitude as &,
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Once d(t,£), as given by(9b), is introduced inta(10g, this  tion M increases withv,;. The CJ minima may be com-
system forms a closed set of equations foand u. The puted in terms of (,,T,) from (14) and the Rankine-
unknown functior®y(7) is obtained when the boundary con- Hugoniot conditions to give, at the leading order (88),
ditions at the shock and at the piston are applied to the sdvl %J=4Q/CpTu.

lution of (103. At the leading order of asymptotic expansion

(8), boundary conditiongl) and (5) at the shock take the B. Independent parameters

following form: The overdrive factor, defined ds=(My/M¢)*>1, is ex-

r(é=0,1)=1, u(é=0,)=1-0\(7)/By(y—1), (12a tensively used in the specialized literature to classify the dif-
ferent regimes of steady propagation. Neither the initial ther-

while the boundary condition at the piston yields modynamic parameterp(,T,) nor the overdrive factof
appear explicitly in our formulation&l0) and (12). Two in-
U(€=+%,7)=Upo=vpo/Vnos (12 dependent parametefs?q), defined by(11a and (13b),

characterize both the reactive mixture and the steady propa-
gation regimes. Theay parameter appears through, in
(12b), which is, according td13a, a function ofq and 2.

The correspondence between parameigts) and(f,M2)),

is given by the Rankine-Hugoniot conditions

where v, is the prescribed piston velocity supporting the
detonation in the burned gaseséat+«. Unfortunately the
analytical solution of10g for a given functioné(r,£) is not
an easy task in general.

The presence of the smaif term suggests a perturbative

approach. However, this term does not always yield a small v+1) 1 ) 1

contribution. Thise? term cannot generally be neglected at :(T Tt Mcfﬁ, (15
the leading order of asymptotic expansi@8), because (82— —)f

Du/Dr may take values as large ag4/The conditions?<1 2

means that the flow just downstream of the shock is VerLp owin : :
. , g, as i11a, that strong shock assumpti¢tb) leads
subsonic. However, the local Mach number of the flow in-, smalle?, £2=0(y—1), but with £2>(y—1)/2.

creases with the distance from the shock under the effect oP o _ -
the heat release, and théterm is negligible inN10a only in Two additional parameteisvo(¢), Ay(y—1)] characteriz

imit h isobari o I'cJ(?g the chemical kinetics, appear in the analysis. The reduced
a limiting cases when a quasiisobaric approximation is vall istributionw(€) of the heat release rate governs the steady
everywhere downstream of the shock.

temperature profil@y(¢) in (108, while the temperature sen-
_ sitivity of the induction kineticsBy(y—1), appears in(123.

A. Steady solutions These kinetics parameters govern the dynamical properties
The steady solutions dfl0a), of detonations for any regime of steady propagation charac-
terized by parameter@?,q).

1
_ - 2y _ AR
Uo()=ro(&) =52 [(1+2%) V(L+8%)"=486(8)), C. Different regimes of propagation

(13a The different regimes of steady prozpagation are classified
are useful to classify the different regimes of propagationPy the relative ordering betweenande” or, by using(11b

The temperature increases monotonously with the distand8 the limit (8a), betweenq and By. Two extreme regimes
from the shock,8y(&) [1,6,0], as well as the local Mach a'® worth considering first: near CJ regimsv overdrive

number, an increasing function of the temperature. Within

the framework of approximation@a and (9¢), the leading 9=0(Aw). (163
order of the burned gas temperatureéat+o is given by and regimes at high overdrive,

Oro=1+q with q=Q/C,Tyo. (13b) q=0(1). (16D
According to(13a), the reduced heat release is bounded fromag for the CJ regimé14a and (14b), the near-CJ regimes
above bygc;, 9=<qcj, with, by definition, defined by(169 are characterized by=0O(1/s?), yielding,

_ _ 2282 2 according to(15), f=0(1). According to(13a and (13b),
Opcs= 11 des=(1+e%) e~ 1/de”. (143 e hasu,,=0(1/e?) and the variations ofi, r, and ¢
The caseq=qc, corresponds to the marginal Chapman-across the detonation structure are large, of the same order of

Jouguet(CJ) regime with, according t¢13a, magnitude as %f, while 7 varies of order unity. The local
guetCJ reg g 10133 Mach number of the flow reaches values close to unity. The

Upo=Upc=(1+ £2)/262~1/2¢2, (14  &*term cannot be neglected {#0a), e°Du/D7=0(1). The
opposite regimes defined b§l6b) correspond to a large

yielding a sonic condition at the end of the reactionoverdrive factorf =0(1/e?). Here the variations af, r, and
Upo=2apo, With apo/ano= 05 In practical situations, the 6 across the detonation structure are, accordinglL8a), of
detonation regimeM, is prescribed by the piston velocity order unity, while the variations ofr are small of the same
vpo for any given initial thermodynamic statg,(,T,) of the  order of magnitude as® [see(103]. Thus, at the leading
fresh mixture. The CJ wave corresponds to the minima obrder of limit (8a), the £2 term is fully negligible in(103),
Upo aNd Mg, vpg=vpcy, andMy=Mc;. There is no steady and a quasi-isobaric approximation is valid throughout the
solution forvpyg<uv,cj, and the Mach number of the detona- detonation structure.



4782 PAUL CLAVIN AND LONGTING HE 53

D. Detonation dynamics at high overdrives A. Order of magnitude estimates

A nonlocal equation foi®y(7) describing the galloping Orders of magnitude are obtained from the acoustic mode
detonations in these regimes has recently been obtdéjed propagating upstream given %)
The main steps are recalled here. Generally speaking, the

mass flux across the shock must be balanced by the integral (a—m) J 9 u— 6+ nw|=aH, (183
of the instantaneous rate of density change. A space integra- € or vYMno '
tion of the equation for the mass conservation, first equation
(103, with boundary condition$12g and (12b), yields with
(Vbo—Uno) On(7) f” D q Inw ( g 1D ) 12
= — H(é n=—w(é1)— —— | —=— — =674 18h
" =08 Jo Sordé (173 (&, 7)=_w(&7) Mo | 92 a D7 (18b)

_ N _ o wherew(¢,7) is given by (9b), m=M(7)/M, is the same
Finally the quasi-isobaric approximatiorn= 6, a_nd (99 :_:md factor as in(3), and a=(M N091/2)—17T, introduced in(4), is
(9¢), Dr/D7~D 6/D 7~qw, leads to the following nonlinear expressed here for an ideal gas. An integration along the

integral equation: characteristic curveg=x(7) with dx/dr=—(a—m), yields
642 ¢ £ dx’
_ T e On(T— u— In =fo’, —A R
1+b®N(T)_JO eONTOwy(£ePNT ) dg, Wy T o Jo Oy r=Ane T
(199
with (17  whereAris the time delay on this characteristic curve,
X’ dXH
b=1/a8(y~1)=0(1), Ar= . (190
o (a—m)

valid at the leading order of an asymptotic expansi®a At the marginal CJ case the denominatofi8b) vanishes at
and (8b) for the dynamics of detonation in the regime de-the end of the reaction but without divergence of the integral.
fined by (16b) and wheregBy(y—1) is a parameter of order Thus the order of magnitude of the additional time delay
unity. Oscillatory instabilities with a negligible amplitude of across the detonation thickness is easily obtained ftt8h),
pressure waves are described (yb) with a period of 0s-  Ar=0(My,05¢). At high overdrives(16b) this time delay
cillation related to the transit time of fluid particles from the is, according to8b) and (13b), 6,,=0(1), of thesame or-
shock to the end of the reaction and, thus, according 1a) der of magnitude aM yo=0(1— 2 andAr=0[(1— 7)1/2],
and (11b), much longer than the acoustic time. This showsyielding, in the framework of8a), (11a and(11b), a correc-
that galloping detonations are not related to ordinary thertjon to (17b) of order,B,gl’z. However, in the opposite case,
moacoustic instabilities, at least in limiting cadesh) [6]. for near CJ regime$l6a, Ar is, according to(113), (11b),
The rest of this paper is devoted to studying more realistiGnd (148, 6,c7~1/4M ,2\10' of order unity M Noaégﬁ 1/2,
regimes at moderate overdrive, in betwe&6a and(15b),  yielding a correction td17) of order unity.
in which the effect of pressure waves is no longer fully neg-
ligible but small enough to be investigated by a perturbation

. B. Analysis
analysis.

Here we study the intermediate regime at moderate over-
drive, in betweer(16g and(16b), and defined by

. . : 1=q<pBn. (209
When approaching the marginal CJ regime from the large

overdrive ones by increasing from order unity to large which, according t4119, (11b), and(13b), also corresponds
values[see(163 and(16b)], the Mach number of the burned tg
gases increases. However, accordingltbg and(11b), the
local Mach number of the shocked gases is kept small in the Bn =M o bii<1, (20b)
limits (8a) and(8b). If the local Mach number remains small
on a sufficiently long distance from the leading shock, thewhere these inequalities have to be understood as concerning
transit time of entropy waves is still longer than the one ofthe orders of magnitude. According (©33, the variations
the acoustic mode propagating downstream. Then the posdf uy and 6, across the detonation structure are of the same
tion of the peak reaction rate fluctuates with a much smalleprder asg, while, as shown below, the variation efis still
velocity than the sound speed propagating downstreansmall, of orderM ,6,,. The acoustic effects are described
strong thermoacoustic instabilities are ruled out. The instaby working at the first order of an expansion in powers of the
bility mechanism is expected to be similar to the quasi-small parameteM \,6i: in the limits (8a) and (8b) by ne-
isobaric one but with quantitative changes. In particular, theglecting term of ordeBy ! and still using(9a)—(9c). Regime
upstream propagation of pressure signals must introduce d208 ranges from high overdrived6b) to moderate over-
additional time delay, further increasing the period of oscil-drives. Every propagation regime characterized by an over-
lation. drive factor f of the same order of magnitude ",

IV. ANALYSIS AT MODERATE OVERDRIVES
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f=0(B %,/“), with a positive integen=1, may be described

by this perturbative analysis, up to the first order, By=8:44, Y=12,f=16, Mcy =622 = 0311, g = 117

dimensionless growth rate

Myofi62=0(BnY?"), neglecting terms of second order, 20
M &ofbo=O(BN"™). This shows that terms of ordegy* : ' ' — )
may be consistently neglected, and approximati@as and 15 [ . & isobaric model Eq. (17b)
(9¢) may still be used. Such an analysis provides a satisfac- r ° Fa @)
tory description of regimes not too far from the marginal CJ 10 | “ 5
condition, which is approached for large n>1. Fa % ]
The local Mach number increases with the distance from Rl .° a -
the shock but, in propagation regini@03g), it keeps a value Fo ]
.. . . . 0.0
sufficiently smaller than unity to work in perturbation around r RE
the quasi-isobaric approximation of the detonation structure, o5 E E
Mpo=MnofiZ anda 1=0(M y,6*?. The order of magni- Tk ]
tude of pressure variation is evaluated from the second equa- P N R T I
tion of (109 by anticipating that the period of oscillation 0 5 10 15 20 28
keeps the same order as at high overdrives, yielding di less frequency

57=0(M %,6,,0). The second term on the right-hand side of

(18b) describes gradient effects of the nonhomogeneous me- FIG. 2. Dimensionless growth rate vs dimensionless frequency
dium across which the sound propagates, yielding a relativef the eigenvalues of a typical unstable spectrum obtained from
correction to the first termqw of orderM \,q/ 862 which is  Egs. (253 and(25b) in comparison with both the exact numerical
of the same order of magnitude as the first relative correctiosolutions of the linearized version of Eq®)—(4) with boundary

to the delay,M .02 The leading order of the pressure conditions(1a), (5), and(6) and the approximate solution obtained
variation across the detonation is obtained by introducing th&om the quasi-isobaric modél7h). The considered parameters are
quasi-isobaric approximation af in the equation for mo- ¥=1.2,f=1.6, andM¢;=6.22(¢=0.311 andy=1.17). The reaction

mentum conservatiofthe second equation ¢103] model is an Arrhenius law witlBy=8.44. The time scale used to
reduce the variables is the half-reaction time.

[7(§,7)—m(§=0,7)] ¢ . o _ _ _
M2 = —QJO w(¢', 1)dé inside the detonation thickness up to the first order. How-
Y¥INo ever, the velocity fluctuations at the exit of the detonation
¢ = gw(¢g",T) structure,du(é=+o, 7), feed acoustic waves in the down-
+QLd§' L, —,, d¢, stream region of burned gases with a velocity amplitude

Sup/uy, of order My,0is2 and a pressure amplitudr of
(21 orderM Z,6,,0. Then the first pressure correction to the deto-

o nation dynamics is obtained fro@3) by using as boundary

where om(£=0,7) is given by(1a. condition u(é=+, 7), the acoustic radiation conditio®),
According to (4) with a *=(My,6"?, the ratio of the \yritten as

detonation thickness to the acoustic wavelength in the
burned gases is small, of ordkty, 0. Pressure field21) U(E=+%,7) — Upo= Obd 7(&=+%,7) — mpo ]/ YM o,
is valid across the detonation structure, a thin layer compared (24
to the acoustic wavelength. In the framework of a multiple o o
scale approximation associated wi0b), the limit &+  Whereom(§=+, 1)/yMyq is given by the limit{— +oo of
of (21) yields the value of the acoustic field at the entrance of21) N which 6m(§=0, 7) is obtained from Rankine-
the burned gas region where a radiation condit@nholds. ~ Hugoniot condition(1a). Another Rankine-Hugoniot condi-

As H vanishes outside the detonation thickness, a linear ex4on (5) providesu(§=0, 7) in (23). The final result for the
pansion inAr may be introduced int¢19a with, according ~ detonation dynamics at intermediate regir(@@a and(20b)
to (19b), is may be written in the form of a nonlinear integral equation,

similar to (17b),

Ar~M fX,ex”, 2y, 22 - : :
Mo J 00T P ey [ e e < Oha, (259
0

Then the same quasi-isobaric mass conservation as at high . ) 1/2 . -
overdrives is obtained by introducing the limit-+oc of  valid up to the first ordemM o050, but with both a modified
(21) into (193 bifurcation parameteb’ and a modified delay’ ¢ resulting

from pressure effects,

w(g, ndé, (23 b'=b(1+Myobid), «'=(1+Myobed, (25b

U(é=+o,7)—u(é(=0,7) _ J"C

q ~Jo
. . 12 o where parameteb is the same as ifil7h).
but valid here up to the first ordel yo 045, and limited to

the detonation structure. This is easily unde_rstood by. noting V. DISCUSSION AND CONCLUSION
that the pressure term in the mass conservdfiost equation
of (103] yields a correction tai/q of the following order, As shown in[6], Eq.(17b) presents a Hopf bifurcation for

M 20640, SO that—gu/9é=Dr/D7~D6@/Dr~qw is valid  a sufficiently strong temperature sensitivitarge By, small
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b) representing the galloping detonations of strongly overstill the quasi-isobaric mass conservation exhibited at high
driven detonationg16b). The reduced distributiowy(¢) is  overdrives. This result definitely clarifies the nature of gal-
stiffer, the critical value of3 is smaller, and the detonation loping detonations at ordinary conditions.
is more unstable. The origin of the oscillations lies on the The oscillatory instability of detonations very close to the
delay introduced by the entropy waves in a quasi-isobariéJ regimes represented k§6a cannot, from a mathemati-
mass conservation. The nonlinear behavior is governed bgal point of view, be described by the perturbative analysis
the temperature sensitivity of the induction kinetics. Com-used for regimes represented (@pa. The reason is that the
parisons with numerical simulations show right orders ofperturbation paramete¥ o6, has an order of magmtude
magnitude for both frequencies and critical values of paramwhich is no longer smaller than unityy NCJHbCJ 1. How-
eterb obtained from(17b), but with quantitative discrepan- ever, as no new phenomenon is involved, only quantitative
cies at moderate overdrivg§]; see Fig. 2. modifications are expected. Moreover, the neglected terms
According to(258 and(25b), describing the dynamics of being typicallyM2.,0pc= 3, the quantitative differences are
detonations at moderate overdrives defined (B9a and not so large. Comparisons with numerical results show a
(20b), the pressure fluctuations introduce two quantitativerelatively good quantitative agreement for both the period of
modifications from the results at high overdrives but nooscillations and the stability limits predicted k85) at mod-
qualitative change(i) The period of the oscillation is in- erate overdrives. The results are still satisfactory for over-
creased, andii) the critical value of the bifurcation param- drive factors which are not very far from unity. As an ex-
eterb is decreased. By increasing the critical value of theample, a typical unstable spectrum given(B$) is plotted in
temperature sensitivity3y at the instability thresholdthe  Fig. 2, in comparison with both the exact numerical solutions
critical value of 148\(y—1) is decreaseld the pressure ef- and the approximation solutions obtained from the quasi-
fects appear to be stabilizing. The main reason is that thisobaric model.
energy rate involved by the pressure fluctuations at the shock Owing to the effects of inhomogeneities, the additional
is, according to18) and(5), negative,5pydv <0, exhibit-  delay (25b), MNOG%é,z, is quantitatively different from{19b)
ing a damping mechanism which is added to the one assodbut has the same order of magnitude. The same equation as
ated with the radiation condition at the end of reactiéh (253 involving the same delay d49b) is obtained when the
These two damping mechanisms overcome the other pregradient effects are negligible, as in the limiting case of a
sure effects, so that the net effect of the pressure is stabilizmall heat releaseq<1, corresponding to very strongly
ing. The destabilizing mechanism at moderate overdrives isverdriven detonationfs].
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